Student Number:

St George Girls High School

Trial Higher School Certificate Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Section I	/10
Section II	
Question 11	/15
Question 12	/15
Question 13	/15
Question 14	/15
Question 15	/15
Question 16	/15
Total	/100

Total Marks – 100

Section I

Pages 2-6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II

Pages 7 – 12

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

Section I

- 1. What is the value of $\frac{10}{i|z|}$, if z = -1 + i?
 - (A) $-5i\sqrt{2}$
 - (B) 2 5*i*
 - (C) $5i\sqrt{2}$
 - (D) 2 + 5*i*

2. Which of the following are the coordinates of the foci of $9x^2 - 36y^2 = 324$?

- (A) $(\pm \sqrt{5}, 0)$
- (B) $(0, \pm \sqrt{5})$
- (C) $(\pm 3\sqrt{5}, 0)$
- (D) (0, $\pm 3\sqrt{5}$)
- 3. Consider the region bounded by the *y*-axis, the line y = 4 and the curve $y = x^2$. If this region is rotated about the line y = 4, which expression gives the volume of the solid of revolution?
 - (A) $V = \pi \int_0^4 x^2 \, dy$
 - (B) $V = 2\pi \int_0^2 (4-y)x \, dy$
 - (C) $V = \pi \int_0^2 (4-y)^2 dx$
 - (D) $V = \pi \int_0^4 (4-y)^2 dx$

Section I (cont'd)

4.
$$\int_{0}^{2} \frac{x^{2}}{\sqrt{x^{3}+1}} dx$$
(A) $\frac{1}{9}$
(B) $\frac{1}{3}$
(C) $\frac{4}{3}$
(D) 9

5. For the hyperbola $(y + 1)^2 - x^2 = 1$, find an expression for $\frac{d^2y}{dx^2}$.

(A)
$$\frac{x}{(y+1)^3}$$

(B) $\frac{1}{(y+1)^3}$
(C) $\frac{x}{y+1}$
(D) $\frac{1}{y+1}$

6. The polynomial
$$P(x) = 4x^3 + 16x^2 + 11x - 10$$
 has roots α, β and $\alpha + \beta$. What is the value of $\alpha\beta$?

(A)
$$\frac{5}{2}$$

(B) $-\frac{5}{2}$
(C) $\frac{5}{4}$
(D) $-\frac{5}{4}$

Section I (cont'd)

7. The diagram below shows the graph of the function y = f(x)

Which of the following is the graph of $y = \frac{1}{f(x)}$?

(D)

Section I (cont'd)

8. The diagram shows the graph of y = P''(x) which is the second derivative of a polynomial P(x).

Which of the following expressions could be P(x)?

- (A) $(x + 2)^2 (x 1)$
- (B) $(x + 2)^4 (x 1)$
- (C) $(x-2)^4 (x-1)$
- (D) $(x-2)^4 (x+1)$

9. In the Argand diagram the point **P** represents the complex number z. When this number is divided by 5i it gives a new complex number.

Which one of the points on the diagram above represents the new complex number?

- (A) Q
 (B) R
 (C) S
 (D) T
- 10. The sides of a triangle are the first three terms of an arithmetic progression with the first term 1 and the common difference d. What is the largest set of possible values of d.
 - (A) -1 < d < 1(B) $-\frac{1}{2} < d < 1$ (C) $-\frac{1}{3} < d < 1$
 - (D) $-\frac{1}{4} < d < 1$

End of Section

Section II 90 marks Attempt Questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Ques	stion 11 (15 marks) Use a SEPARATE writing booklet	Marks
(a)	For the complex number $z = \sqrt{2} + \sqrt{2}i$	
	(i) Express z in modulus-argument form	2
	(ii) Find z^{12} .	2
(b)	Evaluate $\int_{\frac{1}{2}}^{2} \frac{1}{2x^2 - 2x + 1} dx$ to 4 significant figures.	4
(c)	Find the square root of $1 + 2\sqrt{2}i$.	3
(d)	Reduce the polynomial $x^6 - 9x^3 + 8$ to irreducible factors over the: (i) real field (ii) complex field	2

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Use the substitution
$$t = \tan \frac{\theta}{2}$$
 to find $\int \frac{1}{1 + \cos \theta + \sin \theta} d\theta$. 3

- (b) $P(a \sec \theta, \tan \theta)$ is a point on the hyperbola $\frac{x^2}{a^2} y^2 = 1$, a > 1, with eccentricity *e* and asymptotes L_1 and L_2 . *M* and *N* are the feet of the perpendiculars from *P* to L_1 and L_2 respectively. Show that $PM.PN = \frac{1}{e^2}$.
- (c) Use integration by parts to find $\int x \sec^2 x dx$.
- (d) The area between the curve $y = 3x x^2$ and y = x, between x = 1 and x = 2 is rotated about the y axis. Using the method of cylindrical shells, find the volume of the solid of revolution formed. 3

(e)	(i)	Given that sin x can be written as $sin(2x - x)$ show that	
		$\sin x + \sin 3x = 2\sin 2x\cos x$	1
	(ii)	Hence or otherwise find the general solutions of $\sin x + \sin 2x + \sin 3x = 0$.	2

End of Question 12

Marks

Question 13 (15 marks) Use a SEPARATE writing booklet.

The roots of $x^3 + x^2 + 1 = 0$ are α, β and γ . Find the cubic equation whose roots are **(a)** 4

$$\frac{1}{1-\alpha}, \frac{1}{1-\beta}, \frac{1}{1-\gamma}$$

Express your answer in the form $ax^3 + bx^2 + cx + d = 0$.

- On the same Argand diagram carefully sketch the region where **(b)** (i) $|z-1| \le |z-3|$ and $|z-2| \le 1$ hold simultaneously.
 - Find the greatest possible value for |z| and arg z. (ii)

The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersect the *x*-axis at the points A and B. (c) The point P (x_1, y_1) lies on the ellipse. The tangent at P intersects the vertical line passing through B at the point Q as shown in the diagram.

(ii) Show that the coordinates of Q are
$$\left(a, \frac{b^2}{y_1}\left(1-\frac{x_1}{a}\right)\right)$$
 1

Show that AP is parallel to OQ (iii)

End of Question 13

Marks

3

2

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A sketch of the function f(x) is shown below.

(i)	y = f(x)	2
(ii)	$y = [f(x)]^2$	2

(iii)
$$y = \ln f(x)$$
 2

(b) The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$.

(i) Find the equation of the tangent to the hyperbola at the point *P*. 2

(ii) The tangent at P cuts the x-axis at A and the y-axis at B. Show that the 2 area of the triangle AOB is independent of t.

(c) Find the values of the real numbers p and q given that

$$x^{3} + 2x^{2} - 15x - 36 = (x + p)^{2}(x + q)$$
2

(d) The region shown below is bounded by the lines x=1, y=1, y=-1 and the curve $x=-y^2$. The region is rotated through 360° about the line x=2 to form a solid. Calculate the volume of the solid using the method of slicing?

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) A particular solid has as its base the region bounded by the hyperbola $\frac{x^2}{4} - \frac{y^2}{5} = 1$ and 4 the line x = 4.

Cross-sections perpendicular to this base and the x –axis are equilateral triangles. Find the volume of this solid.

(b) Let
$$I_n = \int_{1}^{4} (\sqrt{x} - 1)^n dx$$
, where $n = 0, 1, 2$.

(i) Show that
$$(n+2)I_n = 8 - nI_{n-1}$$
. 3

(ii) Evaluate
$$I_4$$
.

(c) (i) Use the results $z + \bar{z} = 2Re(z)$ and $|z|^2 = z\bar{z}$ for the complex numbers z to 3 show that $|\alpha|^2 + |\beta|^2 - |\alpha - \beta|^2 = 2Re(\alpha\bar{\beta})$.

(ii) The diagram shows the angle θ between the complex numbers α and β . Prove that

$$|\alpha||\beta|\cos\theta = Re(\alpha\overline{\beta}).$$

End of Question 15

Marks

1

2

2

Questio	n 16 (15 m	narks) Use a SEPARATE writing booklet.	Marks
(a)	Let <i>I</i>	$F(x) = e^{x^2}$ for all $x \ge 0$.	
	(i)	Find $F^{-1}(x)$, the inverse function of $F(x)$	1
	(ii)	State its domain and range of $F^{-1}(x)$.	2
	(iii)	On the same set of axes, sketch $F^{-1}(x)$ and $F(x)$ indicate the region represented by	2
		$\int_0^1 F(x)dx$ and $\int_1^e F^{-1}(x)dx$	

(iv) Evaluate
$$\int_{0}^{1} F(x) dx + \int_{1}^{e} F^{-1}(x) dx$$
. 2

(b) The cubic equation $x^3 + kx + 1 = 0$, where k is a constant, has roots α, β and γ . For each positive integer n,

$$S_n = \alpha^n + \beta^n + \gamma^n.$$

(i) State the value of
$$S_1$$
.

- (ii) Express S_2 in terms of k.
- (iii) Show that for all values of *n*,

$$S_{n+3} + kS_{n+1} + S_n = 0.$$
 3

(iv) Hence or otherwise express $\alpha^5 + \beta^5 + \gamma^5$ in terms of k.

End of Examination

Ext 2 Trial 2017 Solutions 10 10 10 1/3/ 1 11+1 $= \frac{10}{i\sqrt{2}} \cdot \frac{i\sqrt{2}}{i\sqrt{2}}$ = 1052 1 -2 = -5/2 i 911 2 = 324- 364 2 36 $\frac{b^2}{9} = e$ $\frac{36}{36}$ 2 (e2 -1 2_1 = 52 ez e $\alpha = 6$ Foci 1 $(\pm 6 \times (5 \circ))$ $\pm 3(5, 0)$ $\pm ae, o) =$ C Calenta Segurari 3 Using Disc Method $\frac{\pi}{2}$ dx = 32 2 13 Vx3+1 x 3+1 $u = \chi^3 + 1$ du 1-3 9 H du 31 Vu di u 17 x=2, 9 41= = 1 . 2 1 50 -C

5. (y+1)² - 1² - 1 $\frac{2(y+1)dy}{dy} - 2n = 0$ $\frac{dy}{dx} = \frac{\pi}{y+1}$ d²y dn² $y_{+1} - \lambda y_{-1}$ $(y_{+1})^2$ $y_{+1} - \chi^2$ y_{+1} (y+1) $(y+1)^2 - n^2$ $(y+1)^3$ B ------ $(y + 1)^{3}$ $P(x) = 4x^3 + 16x^2 + 11x - 10$ 6 Er: $d+\beta+a+\beta=-16$ $2(\alpha+\beta) = -4$ $\alpha+\beta = -2$ $\Sigma \alpha \beta : \ \alpha \beta : + \alpha (\alpha + \beta) + \beta (\alpha + \beta) = \frac{11}{4}$ $\alpha\beta + (\alpha + \beta)^{2}$ 11 $\alpha\beta + (-2)^{L} = \frac{1}{2}$ $\frac{d\beta}{=57^{4}}$

D 8. Second derivative has double root at x=2. So the original function should have a root of multiplicity 4 at x=-2 D A division of 57 is equivalent to a multiplication of 1 si = 1 51 i -5 9 Multiply P by i means 10. Sides of triangle 1, 1+d, 1+2d Now 1+ d+1 < 1+2d 2+021+6 e d 0,-1 + 1+2d < 1+ d 2+2d < 1+d d < -1 1+d + 1+7d 21 0/ $\frac{2 + 3d}{3d} \leq \frac{1}{-1}$ $\frac{3d}{d} \leq -\frac{1}{7}$ -1/ cd c1

MATHEMATICS EXTENSION 2 – QUESTION (SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** a) i |z| = , 2+2 1 = 2 org 2 = 문 -- Z = 2 cis 문 $ii = 2^{12} = 2^{12} \operatorname{cis}(\frac{11}{4} \times 12)$ 1,1 $= 4096 (\cos 3\pi + i \sin 3\pi)$ = 4096 (-1 + 0)=-4096 b) $\int_{1}^{2} \frac{1}{2x^{2}-2x-1} dx = \frac{1}{2} \int_{\frac{1}{2}}^{2} \frac{1}{x^{2}-x+\frac{1}{2}} dx$ $= \frac{1}{2} \int_{\frac{1}{2}}^{2} (x - \frac{1}{2})^{2} + (\frac{1}{2})^{2} dx = 1$ $\begin{bmatrix} \frac{1}{1/2} + \frac{1}{1/2} + \frac{1}{1/2} \end{bmatrix}$ $=\frac{1}{2}\left[2+\alpha_{1}-1\left(2\pi-1\right)\right]^{2}$ Note that trigonometric = tan-13 -ta-10 calculus is performed in = 1.249045 ... radians. = 1.249 The equivalent in degrees (71.57) was awarded 3¹/₂ c) Let x+iy be the square root of 1+2JZi $\frac{...(x + iy)^{2}}{x^{2} - y^{2} + 2ixy} = 1 + 2\sqrt{2}i$ $\frac{x^{2} - y^{2} + 2ixy}{Equating} = 1 + 2\sqrt{2}i$ $\frac{Equating}{x^{2} - y^{2}} = 1$ $\frac{2xy}{2} = 2\sqrt{2}$ xy= 12 y = 12

MATHEMATICS EXTENSION 2 – QUESTION \ | SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS sub y= 12 into x2-y2=1: Note that $x^{2} - \frac{2}{x^{2}} = 1$ $x^{4} - 2 = x^{2}$ $\pm \sqrt{2} \pm i \neq \pm (\sqrt{2} \pm i)$ as the LHS $x^4 - x^2 - 2 = 0$ suggests 4 solutions $(x^2-2)(x^2+1) = 0$ $(x - \sqrt{2})(x + \sqrt{2})(x^{2} + 1) = 0$ (: x ER) $\therefore x = \pm \sqrt{2}$ l : y= ± 1 . He square roat of 1+252i is ± (52+i) 1 ie. JZ+i and -JZ-i $d) \underline{i} x^{6} - 9x^{3} + 8 = (x^{3})^{2} - 9x^{3} + 8$ $= (x^{3} - 1)(x^{3} - 8)$ This is a degree $= (x^{3} - 1) (x^{3} - 8) \qquad 6 \text{ polynomial};$ = $(x^{2} - 1) (x^{2} + x + 1) (x^{2} - 2) (x^{2} + 2x + 4) \qquad 1, 1 \qquad 10 \text{ ng division}$ irreducible over R was a bad choice. ii For 22 +2 +1, $x = -1 \pm \sqrt{3}i$ for x2+2x+4+, $\frac{7}{2} = -2 \pm 2\sqrt{3}i$ = -1 ± J3i $x^{6} - 9x^{3} + 8 = (x - 1)(x - [-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i])(x - 2)(x - [-1 \pm \sqrt{3}i])$ $= (x-1)(x+\frac{1}{2}+\frac{y}{2}i)(x+\frac{1}{2}-\frac{y}{2}i)(x-2)(x+1+\sqrt{3}i)(x+1-\sqrt{3}i)$ errors of sign were worth I a mark.

1 **MATHEMATICS EXTENSION 2 – QUESTION** SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 120) 5120 + 000 = 1 t= tan = dt = 12 sec oz tano+1=seco 25 = ½(t2+1) 1 d = = =46 5110 2 dt 1: 20 1+0 tand = de)+(1-e)+20t dt -6050 = 1-t + C = ln(1+t) = ln/1+tan = 1+C SIND = Htz 1 M 125) Plaseco, Tom O 1700050 Xay=0 Asymptotes: y= + b x R. Y=TZ 4: a.y >>< L dy =-x 1= x - ay =0 1= . x+ ay =0 1 Using perpendicular formula for distance of PM and P.N 1+ by + c. ax PM= V. Seco - a. tanto a seco + a + anto PN= (Ita-(a (seco: tand) × a (seco +tan b) PMXPN = Titaz Jitar = à (sec 0 - tan +)

2. **MATHEMATICS EXTENSION 2 – QUESTION** SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** (2b) cout PM XPN = at x1 $= a^{2} \qquad bot b^{2} = a^{2}(e^{2} - 1)$ $= a^{2} \qquad 1 = a^{2}(e^{2} - 1)$ $= a^{2} \qquad 1 = a^{2}e^{2} - a^{2}$ $u^{2}e^{2} \qquad 1 = a^{2}e^{2}$ $\therefore PM \times PN = \frac{1}{2}E^{2} = a$ 1 12c) Sx. sector du u=x av=sector = uv - Sv. du du=1 v=tanx = uv - Sv. du I = x. tanx - Stanze dx 5 = 2. tank - J since due = >c. tank +) - stac dx =>c. tank + lin as x + c 1 12d) y= 3x -x YESE y = x $x = 3x - x^{2}$ 3 x+x-3x=0 Su x-2x=0 x(x-2)=0 34 x=0 or 2. 1 y= 311-202 A= 2TTX. SX 4-42 SV= 2T24.52 マボッレ = 211 x (22-22)-8x y, = 3x-x2 $V = \lim_{y \to y_0} 2\pi \pi (2x - \pi) \cdot y_1 \qquad y_2 = 3x - \chi^2 - \pi (2x - \pi) \cdot y_1 = 3x - \chi^2 - \pi (2x - \pi) = 2\pi (2x - \pi) =$ 9 $= 2\pi \int (2x^{2} - x^{2}) dx$ $= 2\pi \int (2x^{2} - x^{2}) dx$ 1 = 11TT au units

MATHEMATICS EXTENSION 2 – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
120/i) SIN X + SIN32		
= $sin(2x-x) + sin(2x+x)$		
=sindu cos > - sos be sinx +sinbx . unx	+ 00020	SINCL
=7.51 ~2x. cosx	1	
\therefore since $\pm \sin 32$ = 2.5 in 2x. conc	1	
ii) sinx + sin2x + sin3x = 0		
Z.Sondicor +sin2x =0		
$sindx(2\cdot cosx + 1) = 0$		
(SEALOC = 0 OF 2-COOX+1=0	15	
x=nn 2600x=-1	1.	
$2 \qquad corr = -h_{2}$	4	
スニンハモノジョ		
のみび=(21+1)町生雪		
N=nI or x=2nTIZ		
(or (2n+1) + I]	1	

MATHEMATICS EXTENSION 2 – QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS <u>b) ii</u> Best responses care from students who redrew the relevant diagrams. Max 12 occurs at (2,1) or (2,-1) Note that if your answer to by i $|2| = \sqrt{2^2 1 l^2}$ = $\sqrt{5}$ was incorrect it was difficult Max argz occurs when tagent is perpendicular to radius to demonstrate He required skills for part ii Very few students correctly answered Heis part. $\sin \phi = \frac{1}{2}$ $c) \underline{i} \quad \frac{y^2}{q^2} + \frac{y^2}{h^2} = l$ $\frac{d}{dx}\left[\frac{x^{L}}{q^{2}}+\frac{y^{L}}{b^{2}}\right]=\frac{d}{dx}\left(1\right)$ $\frac{2x}{a^2} + \frac{2y}{h^2} \frac{dy}{dx} =$ $\frac{dy}{dz} = \frac{-2x/a^2}{2y/b^2}$ correct differentiation $= \frac{-xb^2}{ya^2}$ At $P(x_1, y_1)$, $\frac{dy}{dx} = \frac{-x_1, b^2}{y_1, q^2}$

MATHEMATICS EXTENSION 2 – QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS Equation of tongent through (21, 4,): $y - y_1 = \frac{-3c_1 b^2}{y_1 q^2} (x - x_1)$ $yy_{1}a^{2} - y_{1}^{2}a^{2} = -3cx_{1}b^{2} + 3c_{1}^{2}b^{2}$ xx, b2 + 44, a2 = x, 262 + 4, 292 $\frac{xx_{1}}{g^{2}} + \frac{yy_{1}}{h^{2}} = \frac{x_{1}^{2}}{g^{2}} + \frac{y_{1}^{2}}{h^{2}}$ [Because x, 2 y, 2 -) as P(x, y,) lies on the ellipse x2 y2 = 1 correct substitution $\frac{2r_1}{q^2} + \frac{y_1}{h^2} = 1$ and algebra Oii The coordinates of Bore (a, o) : Q lies on the line x=9 Sub x=a into equation of tagent $\frac{a_{3c}}{q^2} + \frac{y_{1}}{h^2} = 1$ $\frac{\partial L_1}{\partial t} + \frac{y'y'}{h^2} = 1$ $\frac{yy'}{h^2} = 1 - \frac{x_i}{q}$

MATHEMATICS EXTENSION 2 – QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS substitution of $\frac{y}{y} = \frac{b^2}{y} \left(1 - \frac{y_i}{q} \right)$ x=9 and correct algebra $\therefore Q\left(q, \frac{b^2}{4}\left(1-\frac{x_i}{q}\right)\right)$ $\underbrace{\text{Diii}}_{AP} = \frac{\gamma_{1} - 0}{x_{1} - 9}$ ~ y1 x. +a ł $\frac{M_{0Q}}{M_{0Q}} = \frac{b^2}{u_1} \left(1 - \frac{x_1}{Q} \right) = 0$ $= \frac{b^2}{a} \times \frac{a - x}{a} \times \frac{1}{q}$ $= \frac{b^2(a-x,)}{a^2y_1}$ simplified expression for man Since (x, y,) lies on the ellipse x, + 4, = 1 $\frac{a^2y_i^2}{a^2y_i^2} = b^2(a \cdot x_i)$ (2) sub (1) into (1) $M_{OQ} = \frac{a^2 y_i^2}{a^2 y_i (a + x_i)}$ correct algebra $= \dot{y}_{,} = M_{AP} - AP||OQ|$

4 **MATHEMATICS EXTENSION 2 – QUESTION** SUGGESTED SOLUTIONS MARKS 140) **MARKER'S COMMENTS** 4=1865 2 $y = \Gamma f(x)^{-1}$ 6/ 2 è y= lu flx 2 b) P(ct, =) $xy = c^{2}$ = c. x^{-1} = -c. x^{-2} atterative implicit differentiation z^{-} $e \cdot P(ct, s_{e}) = \frac{-c}{c \cdot e} = \frac{-1}{e}$ $- \frac{c}{c} = \frac{-1}{e} (ct - ct)$ $\frac{1}{2} - \frac{c}{t} = -(ct - ct)$ $\frac{1}{2} - ct = -x + ct$ $+ \frac{1}{2}y - 2ct = 0$ 1 gred at ·J \cap JC+

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 14/011) 9 (0,250) >X At A y= b => x+ fy-2ct=0 x to -205=0 $\therefore x = 2ct$ A is (200,0) 1 At B, x=0 => 2y=2ct y = 2ct y = 2c y = 2c y = 2c y = 2c y = 2cArea AAOB = 2x2ct x2c 1 = 22 : Area is independent oft. $\frac{14c}{-p} \propto \frac{1}{2} + \frac{2}{2} - \frac{15c}{-36} = \frac{2}{2} + \frac{1}{2} \cdot \frac{15c}{-36} = \frac{2}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1$ $f(x) = x^3 + 2x^2 - 15x - 36$ $g'(G) = 3x^2 + 4x - 15$ -p is a root of g'(G) = 0 of multiplicity 1 3x2 +4x - 15 = 0 (3x - 5)(x + 3) = 0x=== or x=-3 1 「()= ()+2×()+-15×53 36 +0 (B) = (-3) + 2×(3) - 15×-3-36=0 p = 3Let n = 0, $-36 = p^2 - q_1$ $-36 = q \cdot q_2$ q = -4: p = 3, q = -41

4 (a) SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
STA SY		
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		
1		
about 22		
r= innel radius = i		
$R = outer$ (adius = $M + 2 = y^2 + 2$		
Area of slice = TT (R2-r)		
$=\pi((4^{2}+2)^{2}-1^{2})$		
$=\pi(y^{4}+4y^{2}+y-1)$		
$=\pi(y^{4}+4y^{2}+3)$	1	
SV = π(44+44+3).84		
$V = \lim_{x \to 0} \sum_{x \to 0} \frac{\pi(y^4 + 4y^2 + 3)}{5y}$	1	
8420 9=-1		
$= 2\pi \int (y^{4} + 4y^{2} + 3) dy$		
=211 45+44 +34+07		
= 2TT [1/5+9/3+3+c)-(0+c)]		
= 2TT × 68		
= 136 II cu units	1	
15		
		·

MATHEMATICS EXTENSION 2 - QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 15a) 1 PDI $\frac{2}{4} - \frac{3^2}{5} = 1$ $\alpha^2 = 4$ $\frac{-4}{60}$ i 4 60 Take PG(, y) on the curve, y >0 Area of cross-section A(x) = Lab. sinC = 5.24.24.5m 60° = 24- x 13 $\begin{array}{l} A(n) = \sqrt{3} \cdot y^2 \\ \dot{\delta} \sqrt{3} = \sqrt{3} \cdot y^2 \cdot fx \end{array}$ 1 V = lim J3. y2. Ex 1 Now $\frac{3c^{2}}{4} - \frac{3c^{2}}{5} = 1$ $\frac{3c^{2}}{4} + 1 = \frac{3c^{2}}{5}$ $y^{2} = 5(3c^{2}-1)$ $5 = 1i pn(\sqrt{3} \cdot 5(2c^{2}-1)) gx$ $\frac{3c^{2}}{5c^{2}} = 2$ 5 $= 5\sqrt{5}\int_{0}^{\frac{1}{2}} (\frac{2}{2} - 1) dk$ $= 5 \sqrt{3} \left[\frac{2}{5} - x + c \right]_{1}^{4}$ $= 5 \sqrt{3} \left[\frac{64}{5} - 4 - (\frac{8}{5} - 2) \right]$ $= 513 \times \frac{8}{3}$ = 4013 units 1 $150) \pm n = 54 (12 - 1) dx, n = 0, 1, 2, ...$ $u = (x^{2} - i)^{n} \qquad dv = 1$ $du = n(x^{2} - i)^{n-1} \times 1x^{2} \qquad v = x$ $= n(x^{2} - i)^{n-1} \times 1x^{2} \qquad v = x$ ()1 In= uV- Sv du

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** $T_{h} = [x(J_{x} - 1)^{n} + c] - [x \cdot n (J_{x} - 1) dx$ = [4x(2-1) - 0] - 2[J_{x}(J_{x} - 1)^{n-1} dx $= 4 - \frac{h}{2} \int ((\sqrt{3x} - 1) + 1)(\sqrt{3x} - 1)^{n-1} dx$ = 4 - $\frac{h}{2} \int ((\sqrt{3x} - 1)(\sqrt{3x} - 1)^{n-1} + 1 \times (\sqrt{3x} - 1)^{n-1}) dx$ $=4 - \frac{n}{2} \int (\sqrt{2} - 1)^n d_{2} c + (\sqrt{2} - 1)^{n-1} \int d_{2} c \\ = 4 - \frac{n}{2} \int (\sqrt{2} - 1)^n - \frac{n}{2} \int (\sqrt{2} - 1)^{n-1} d_{2} c \\ T = 4 - \frac{n}{2} I_n - \frac{n}{2} I_{n-1}$ 1 2.In= 8 - n. In - n. In-1 1 $(n+2) \cdot I_n = 8 - n \cdot I_{n-1}$ 15 bii) Put N=2, 4 I2 = 8 - 2. I, $\begin{array}{r} 1 \\ T_{2} = 2 - \frac{1}{2} \\ T_{2} = 2 - \frac{1}{2} \\ T_{3} =$ 1 1 2

		9		
MATHEMATICS EXTENSION 2 – QUESTION				
15 c) 1 BSUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS		
\dot{v}				
OT KI				
A				
1077				
0				
3+3=2Re(3), 131=33				
Prove $ x ^2 + \beta ^2 - x - \beta ^2 = 2 \operatorname{Re}(\alpha \beta)$				
$LHS = \chi \cdot \overline{\chi} + \beta \overline{\beta} - (\chi - \beta)(\overline{\chi} - \overline{\beta})$	1			
$= \cancel{A} \cdot \overrightarrow{X} + \overrightarrow{B} \overrightarrow{B} - (\cancel{A} - \overrightarrow{B}) (\overrightarrow{X} - \overrightarrow{B})$				
=22 + BB - (22 - 2B - 15 - +BB)				
= X: 7 + BB - XZ + DB + BZ - BB				
$= \alpha \beta + 2\beta$	1			
$=\chi^{5} + 2\beta$	4			
$= 2 \left(\text{Ke} \left(\mathcal{A} \left(\frac{5}{2} \right) \right) \right)$				
AB = (Z - [s])				
Using comine rule	1			
$cos \phi = int + [1 - 1] \phi$	1			
2 R. (ZB)				
$\cos \omega = \frac{1}{2} \frac{1}{ \omega } \frac{1}{ \omega }$				
$(m \rho) \mathcal{O}_{2}(\chi \overline{\beta})$				
KELIRI	9994 4994 499 499 499 499 499 499 499 4			
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
INTIBLE WOOD = DO (LA	1			

MATHEMATICS EXTENSION 2 – QUESTION (6 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** $f(x) = e^{x^{2}} x^{7} 0$ $let y = e^{x^{2}}$ For inverse, $x = e^{y}$, $y^{7} 0$ $lnx = y^{2}$ $y = \sqrt{lnx} \quad (\forall y \ge 0)$ a) $\underline{i} F(x) = e^{x^2}$ Errors of sign were worth zamark ĩi lnx 7,0 :x7/ : domain: all real x, x7,1 No half marks were grandled. range: all real y, y7,0 Note that if you got part i wrong, it was difficult *iii* 4= F(x) to demonstrate the skills for part ii e y=F 1 for curves 1 for regions (or one correct curve and its region = I mark) 0 F'(x) dicF(x)d>c iv) Area = Area by sympty A ... (F(x)dx + (F'(x)dx = area of rectage = e Units2

MATHEMATICS EXTENSION 2 – QUESTION 16 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $\mathfrak{h} \mathfrak{i} \mathfrak{s} = \mathcal{L}' + \mathcal{B}' + \mathcal{r}'$ The onsule to this question is a value, not $\frac{1}{11} \quad 5_2 = \beta^2 + \beta^2 + \gamma^2$ an expression. $= (\beta + \beta + \gamma)^{2} - 2(\beta + \beta + \gamma + \beta \gamma)$ $= -\frac{\beta}{q} - 2(\frac{\beta}{q})$ ł 20-2k - -2k 111 LHS = 5 +3 + K 5 ++ 5 m $= \lambda + \beta^{n+3} + \gamma^{n+3} + k(\lambda^{n+1} + \beta^{n+1}) + \lambda^{n+1} + \beta^{n+1} + \lambda^{n+1} + \lambda^{n+$ $= d^{n} (\lambda^{3} + k d + i) + \beta^{n} (\beta^{3} + k \beta + i) + \gamma^{n} (\gamma^{n} + k \gamma + i)$ $= d^{n}(0) + \beta^{n}(0) + \gamma^{n}(0)$ = 0 (: +, Bondr are roots) Note that a = RHS being a root does not imply that an is also a root. iv when n=0, $S_{3} + KS_{1} + S_{0} = 0$ $S_{3} = -KS_{1} - S_{0}$ $= -K(0) - (+^{0} + \beta^{0} + \gamma^{0})$ when n 22 5, +K5, +5, =0 $S_{5} = -kS_{3} - S_{2}$ =-k(-3) - -2k $S_{5} = 5k$ $J^{5} + \beta^{5} + \gamma^{5} = 5k$